Microcanonical origin of the maximum entropy principle for open systems.

نویسندگان

  • Julian Lee
  • Steve Pressé
چکیده

There are two distinct approaches for deriving the canonical ensemble. The canonical ensemble either follows as a special limit of the microcanonical ensemble or alternatively follows from the maximum entropy principle. We show the equivalence of these two approaches by applying the maximum entropy formulation to a closed universe consisting of an open system plus bath. We show that the target function for deriving the canonical distribution emerges as a natural consequence of partial maximization of the entropy over the bath degrees of freedom alone. By extending this mathematical formalism to dynamical paths rather than equilibrium ensembles, the result provides an alternative justification for the principle of path entropy maximization as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonuniqueness of canonical ensemble theory arising from microcanonical basis

Given physical systems, counting rule for their statistical mechanical descriptions need not be unique, in general. It is shown that this nonuniqueness leads to the existence of various canonical ensemble theories, which equally arise from the definite microcanonical basis. Thus, the Gibbs theorem for canonical ensemble theory is not universal, and maximum entropy principle is to be appropriate...

متن کامل

Comparison of entropy generation minimization principle and entransy theory in optimal design of thermal systems

In this study, the relationship among the concepts of entropy generation rate, entransy theory, and generalized thermal resistance to the optimal design of thermal systems is discussed. The equations of entropy and entransy rates are compared and their implications for optimization of conductive heat transfer are analyzed. The theoretical analyses show that based on entropy generation minimizat...

متن کامل

A generalized quantum microcanonical ensemble

We discuss a generalized quantum microcanonical ensemble. It describes isolated systems that are not necessarily in an eigenstate of the Hamilton operator. Statistical averages are obtained by a combination of a time average and a maximum entropy argument to resolve the lack of knowledge about initial conditions. As a result, statistical averages of linear observables coincide with values obtai...

متن کامل

Multiscale Sparse Microcanonical Models

We study density estimation of stationary processes defined over an infinite grid from a single, finite realization. Gaussian Processes and Markov Random Fields avoid the curse of dimensionality by focusing on low-order and localized potentials respectively, but its application to complex datasets is limited by their inability to capture singularities and long-range interactions, and their expe...

متن کامل

Basis of a non Riemannian Geometry within the Equilibrium Thermodynamics

Microcanonical description is characterized by the presence of an internal symmetry closely related with the dynamical origin of this ensemble: the reparametrization invariance. Such symmetry possibilities the development of a non Riemannian geometric formulation within the microcanonical description of an isolated system, which leads to an unexpected generalization of the Gibbs canonical ensem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 86 4 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2012